TEXAS TECH UNIVERSITY*

Simultaneous Judgments of Time-to-Contact for Auditory and Visual Objects
 Megan D. Olson
 Houston Human Factors and Ergonomics Society Symposium

Time-to-Contact (TTC)

Background

- Simultaneous Judgments of Multiple Objects
- Baurés, Oberfeld, \& Hecht (2010)
- Compared judgment of two balls to judgments of one ball
- Second object didn't affect judgment of leading object
- Second object delayed judgment of trailing object
- Asymmetry implicates limitations in cognitive processing

The Current Study

- Purpose and Potential Outcomes
- How do judgments of an auditory and a visual object compare to the judgments of two visual objects?
- IF the auditory and visual objects use the same resources as two visual objects
- THEN we'd expect the same pattern of asymmetry
- Outcome: Asymmetric relationship between visual and auditory objects
- Different pattern than Baures’
- Indicating a different use of resources

Method

Method

- Participants
- 24 students
- Procedure
- Simulation(s) of approaching object
- Square or 1 khz tone
- Pressed a button when they thought it would hit them

Unimodal (1 judgment), Auditory Block

Unimodal (1 judgment), Visual Block

Multimodal (2 judgments) Auditory and Visual Block

Results

Results

- Two-Object Analyses
- Used one-object results as a baseline
- Error = judgment of TTC - actual TTC
- Reflects accuracy of the TTC judgments
- Analyzed change in error attributable to making a second judgment
- Compared error of judgment in the two-object condition to the error of judgment in the one-object condition

Results

- Two-Object Analyses
- Object with TTC of 1.5 second = Reference Object
- Other object of other modality =Distractor Object
- Differed in arrival time from reference object by ± 0.5 or $= \pm 1.0$ second
- Considered the effect of making the judgment of the distractor object on the judgment of the reference object

Results

- Two-Object Analyses: DV
- Δ Error $=$ Error $_{2 \text {-object trials }}-$ Error $_{1 \text {-object trials }}$
- Reflects shift in TTC estimates of reference object when a second object is judged

Analysis of 2-object trials

Analysis of 2-object trials

Results

- Two-Object Analyses: IVs
- IV: $\Delta \mathrm{TTC}=\mathrm{TTC}_{\text {reference }}-\mathrm{TTC}_{\text {distractor }}$
- IV: Modality of the reference object: auditory, visual
- IV: Distance: near, far

Results

- Two-Object Analysis
- 3-way ANOVA on Δ Error
- 2 (distance: near vs. far) x 2 (modality: auditory, visual) x 4 (Δ TTC: $-1,-0.5,0.5,1.0$)
- Three-way interaction between modality, distance, and TTC
- $F(3,69)=6.80, p<.001^{*}, \eta_{\mathrm{p}}{ }^{2}=0.23$
- Examined by conducting a 2 (modality: auditory, visual) x 4 ($\Delta \mathrm{TTC}:-1.0,-0.5,0.5,1.0$) ANOVA at each distance (near and far)

Results

- DV: Δ Error
- Far distance only
- Modality x Δ TTC: $\mathrm{F}(3,69)=9.65, \mathrm{p}<.001^{*}$, $\eta_{\mathrm{p}}{ }^{2}=0.30$
- Δ TTC was nonsignificant for visual objects

- Δ TTC was significant for auditory objects $\mathrm{F}(3,69)=19.43, \mathrm{p}<.001^{*}, \eta_{\mathrm{p}}{ }^{2}=0.46$
- Leading auditory object estimated arriving later
- Trailing auditory object estimated arriving earlier

Results

- Two-Object Summary
- Asymmetric difference for auditory and visual objects leading and trailing
- In the far condition...
- Visual object judgment was largely unaffected by additional judgment
- Auditory object judgment was shifted in the direction of the visual object's TTC

Discussion

Discussion

- Comparison to Baurés' results
- Baures et al., 2010
- 2 visual objects
- Judgment of trailing object was systematically delayed
- Implied limited cognitive resources for TTC judgments
- The present study
- 1 auditory object +1 visual object
- Far condition, auditory judgment was shifted towards visual TTC
- Asymmetry implicates some type of limitation in cognitive processing
- Future study: Visual object as a distractor for the auditory object

Practical Implication

- Application: Backup Warning System
- Manipulate the TTC indicated by the auditory and visual components of the warning

http://images.dailytech.com/nimage/backup_camera_car_and_driver.jpg

References

Baurès, R., Oberfeld, D., \& Hecht, H. (2010). Judging the contact-times of multiple objects: Evidence for asymmetric interference. Acta psychologica, 134(3), 363-371.
Baurès, R., Oberfeld, D., \& Hecht, H. (2011). Temporal-range estimation of multiple objects: Evidence for an early bottleneck. Acta psychologica, 137(1), 76-82.
Colavita, F. B. (1974). Human sensory dominance. Perception \& Psychophysics, 16(2), 409-412.
DeLucia, P. R. (1991). Pictorial and motion-based information for depth perception. Journal of Experimental Psychology: Human Perception and Performance, 17(3), 738.
DeLucia, P. R. (2013). Effects of size on collision perception and implications for perceptual theory and transportation safety. Current directions in psychological science, 22(3), 199-204.
DeLucia, P. R., \& Novak, J. B. (1997). Judgments of relative time-to-contact of more than two approaching objects: Toward a method. Perception \& Psychophysics, 59(6), 913-928.
DeLucia, P.R. Preddy, D., Oberfeld, D. (Under review). Audiovisual Integration of Time-to-Contact Information for Approaching Objects.
Lee, D. N. (1976). A theory of visual control of braking based on information about time-to-collision. Perception, 5(4), 437-459.
Oberfeld, D., \& Hecht, H. (2008). Effects of a moving distractor object on time-to-contact judgments. Journal of Experimental Psychology: Human Perception and Performance, 34(3), 605.
Pashler, H. (1994). Dual-task interference in simple tasks: data and theory. Psychological bulletin, 116(2), 220.
Schiff, W., \& Detwiler, M. L. (1979). Information used in judging impending collision. Perception, 8(6), 647-658.
Schiff, W., \& Oldak, R. (1990). Accuracy of judging time to arrival: effects of modality, trajectory, and gender. Journal of Experimental Psychology: Human Perception and Performance, 16(2), 303.
Sekuler, R., Sekuler, A. B., \& Lau, R. (1997). Sound alters visual motion perception. Nature, 385(6614), 308-308.
Shams, L., Kamitani, Y., \& Shimojo, S. (2000). What you see is what you hear. Nature.
Shaw, B. K., McGowan, R. S., \& Turvey, M. T. (1991). An acoustic variable specifying time-to-contact. Ecological Psychology, 3(3), 253-261.
Soto-Faraco, S., Spence, C., \& Kingstone, A. (2004). Cross-modal dynamic capture: congruency effects in the perception of motion across sensory modalities. Journal of Experimental Psychology: Human Perception and Performance, 30(2), 330.
Tresilian, J. R. (1995). Perceptual and cognitive processes in time-to-contact estimation: analysis of prediction-motion and relative judgment tasks. Perception \& Psychophysics, 57(2), 231-245.

Questions?

Acknowledgments

- Dr. Patricia R. DeLucia
- Dr. Daniel Oberfeld and Doug Preddy
- Sam Levulis and Eric Bowen

Method

- Stimuli: 2 objects (Audio + Visual)

		Visual TTC				
		0.5	1.0	1.5	2.0	2.5
	0.5			x		
	1.0			X		
	1.5	X	X		X	X
	2.0			x		
	2.5			x		

Method

- Stimuli: 2 objects (Audio + Visual)

Analysis of 2-object trials (IV's)

Distractor Object

Reference Object

What's Next?

- Possible Mechanism/Future Possibilities: A Visual Distractor
- The trailing visual object was a distractor for the leading auditory object.
- Draws on previous literature:
- Use of visual information for auditory judgment from crossmodal binding (Sekuler, et. al, 1997)
- Modal asymmetry from visual dominance effect (Colavita, 1974)
- Limited resources for processing leading and trailing stimuli's TTC described by Baures

