Investigating display-related cognitive fatigue in oil and gas operations (DCF-VME)

S. Camille Peres, Ranjana Mehta, Thomas Ferris
Texas A&M University, College Station, Texas
Oil and Gas Industry Situation

Vigilance Monitoring Settings
- Drilling/Production
- Midstream
- Refining/Chemical manufacturing

Characteristics
- 24/7 operations
- Complex/multiple displays
- P&ID interface
- Extended time on task
- High cognitive load
- Fatigue issues

Critical Gaps/Needs
- More comprehensive approach for managing fatigue
- Better understanding of cognitive and motivational performance factors
- Interface content and designs that support a sustained, high level of performance
- Improved fatigue assessment and mitigation approaches
• Sleepiness is distinct from cognitive fatigue

• Management of sleepiness, cognitive fatigue, and motivation are required to affect performance

• Task performance declines with longer time on task and high cognitive workload

Adapted from Balkin and Wesensten (2011).
Measuring Fatigue and its Impact on Performance

Subjective
- Self-reported fatigue assessment
- Interruption of tasks
- Retrospective reports

Neurophysiological
- Heart rate variability
- Functional brain activity
- Galvanic skin response

Performance
- Reaction times
- Accuracy, Precision
Relationship Between Mental Demand, Operator Performance, and Activation Across Three Stages of Task Time
Display Influences on Cognitive Fatigue

- “Cognitive efficiency”: information gained from a display per unit cognitive effort
- Affected by display (in addition to individual and contextual) characteristics
 - Engaged sensory modalities (vision, audition)
 - Information encoding methods (spatial vs symbolic encoding, intensity vs spectral qualities of display elements)

(Yang, Shukla, & Ferris, 2012)
Research Questions

1. How are operators in digital monitoring centers, control rooms affected by task-related cognitive fatigue?
2. Task factors?
3. Factors related to operator’s knowledge structure?
4. Interface design elements associated with high cognitive fatigue?
5. Assessment methods?
6. Mitigation: task design, display design?
DCF-VME Study Approach

Phases

1. **Systematic observation** - identify the possible contributors to cognitive fatigue in typical oil, gas, or petrochemical monitoring environments

2. **Simulation** - conduct empirical studies to confirm the contributors to cognitive fatigue

3. **Display Design** - develop and test a new monitoring environment that may mitigate the elements of cognitive fatigue

Measures

- Cognitive assessments
- Performance measures
- Neurophysiological measures
- Subjective self-reports
Industry Benefits

- Better understanding of cognitive fatigue sources and performance effects
- Comprehensive fatigue risk management best practices
- Improved industry standards and guidelines
- Next generation display design approaches
- Optimized assessment, work scheduling, and task strategies
- Improved training procedures
Thank you for your time and attention

For more information:
Ranjana Mehta, rmehta@tamu.edu
Tom Ferris, tferris@tamu.edu
Camille Peres, peres@tamu.edu
Mark Riddell, mriddell@tchpnet.com