

User Interface Biomechanics: Developing a new self-report ergonomic assessment tool

Paul Ritchey, S. Camille Peres Ph.D, & Ranjana K. Mehta Ph.D Texas A&M University Department of Environmental and Occupational Health

Motivation

- Personal computing changed how we work
 - –Reliance on computers and software

- Ergonomic risks associated with computer work
 - -Awkward postures
 - –Repetitive, low force movements
 - –Development of CTDs^{3,4}

Modern Office Ergonomics

- Current focus on physical and behavioral interventions
 - Chairs, input devices, desks
 - Breaks and stretches

However, office workers still suffering and being injured

- User Interface and Interaction Design could be the cause
 - Can alter upper body posture^{5,6}

- User satisfaction can affect physical risk factors⁷

RSIGuard-Paul Ritchey 🛛 🛛 🛛							
Tools	Setup	Help					
BreakTime	ar 💽 For Mei	get Nots	AutoClick				
Mousing [Typing []				
Last Break 23m	Next B		Vork Time 22m				

[5] Elouri, 2009; [6] Filgueiras, Rebelo, & Moreira da Silva, 2011; [7] Dennerlein et al., 2008)

Study Objective

Designed to *begin* a programmatic line of research

- Develop self-report measure sensitive enough for evaluating user interface and interaction design
 - 1. Design the measure
 - 2. Assess the measure
 - Reliability
 - Sensitivity

The measure needs to be effective during the design phase

Developing the Measure

- Leveraging existing ergonomic assessment tools
 - -Borg CR10 (Borg)
 - Strain Index (SI)
 - Body Discomfort Diagram (BDD)
 - Hand Activity Level (HAL)
 - Rapid Upper Limb Assessment (RULA)

	ort that best describes your physical effort, how hard
you felt your muscles w	vorked, during the task you just completed:
Light	(Barely noticeable or relaxed effort)
Somewhat Hard	(Noticeable or definite effort)
Hard	(Obvious effort)
Very Hard	(Substantial effort)
Near Maximal	(Uses shoulder or trunk for force)
	8

Created a self-report using items from these tools

- \rightarrow Informed via interview with geoscientists
- →Testing for reliability and sensitivity

Method

- 166 pp (65 female) from a Texas conference and TAMU
 Ages 18 to 80 (Mean = 32; SD = 13.4)
- Participants completed two computer tasks
 - Tasks designed to be biomechanically different
 - Interaction Methods: Typing and Clicking task (3 min each)
 - Input Methods: Direct (Touch) and Indirect (Keyboard & Mouse)
 - Measure: Self-report administered after each task

Indirect Input

Direct Input

PCA Results - Reliability

• Principal Component Analysis revealed 7 components

Left Side Discomfort	Right Side Discomfort	Task Demand	Wrist Deviation	Task Activity	Shoulder Abduction	Shoulder Flexion
 Trapezius Shoulder Upper Arm Lower Arm Wrist TIM RP 	 Neck Eye Trapezius Shoulder Upper Arm Lower Arm Wrist TIM 	 SI Effort Level Borg CR10 Precision Right Wrist Position Left Wrist Position 	 Right Wrist Deviation Left Wrist Deviation 	 HAL for Right Hand Speed of Work 	 Right Shoulder Abduction Left Shoulder Abduction 	 Right Shoulder Flexion Left Shoulder Flexion
Strain	Factors			Stress Factors	5	

- Differentiate between Strain and Stress related factors
- Differentiate strain between left and right

Results

Independent Variables (Within-Subject)

Input Method

- 1. Direct
- 2. Indirect

Interaction Method (Task)

- 1. Typing
- 2. Clicking

Dependent Variables

- Principle Component (PC) Based Score
 Summation of items that loaded onto PCs
 PC1 Left Side Discomfort
 PC2 Right Side Discomfort
 PC3 Task Demand
 PC4 Wrist Deviation
 PC5 Task Activity
 PC6 Shoulder Abduction
 PC7 Shoulder Flexion
- Repeated Measures ANOVA for each dependent variable
 - 2 (input method) X 2 (interaction method)
 - Repeated measures logistic regression for PC4 and PC6 (Chi-square post-hoc)

Discomfort Components (Strain)

• Higher scores for **direct input** compared to indirect

- Left: F(1,165) = 65.95, p < .001, $\eta p^2 = .286$); Right: F(1,165) = 159.33, p < .001, $\eta p^2 = .491$

• Higher scores for **clicking** compared to typing for the right side

$$F(1,165) = 103.34, p < .001, \eta p^2 = .385$$

Texas A&M **ergonomics** <u>Center</u> <u>Appled & Basic Research + Commercialization + Design</u>

Task Demand - PC3 (Strain)

- Higher scores for direct input compared to indirect
 - $F(1,158) = 238.12, p < .001, \eta p^2 = .601$
- Effect of task was small with typing > clicking
 - $F(1,158) = 7.46, p = .007 \eta p^2 = .045$

Wrist Deviation - PC4 (Strain)

- More likely to report deviation for the **typing task** compared to the clicking task
 - Right wrist: indirect only, $\chi^2(1, N = 332) = 22.30$, p < .001
 - Left wrist: both direct, $\chi^2(1, N = 332) = 108.47$, p < .001, and

indirect $\chi^2(1, N = 332) = 94.09, p < .001$

Task Activity - PC5 (Strain)

- Greater task activity for clicking with direct input only
 - Interaction: Right wrist: indirect only, F(1,164) = 20.40, p < .001, $\eta p^2 = .111$

Shoulder Abduction - PC6 (Strain)

- More reported right shoulder abduction for **direct clicking** compared to all others
 - Direct typing: $\chi^2(1, N = 332) = 28.768$, p < .001, Indirect tasks, $\chi^2(1, N = 332) = 16.913$, p < .001
- More reported left shoulder abduction for **direct typing** compared to all others
 - Direct Clicking: $\chi^2(1, N = 332) = 23.82, p < .001$, Indirect Typing: $\chi^2(1, N = 332) = 16.89, p < .001$, Indirect Clicking $\chi^2(1, N = 332) = 25.84, p < .001$

Shoulder Flexion - PC7 (Strain)

- Greater shoulder flexion for direct input method
 - $F(1,161) = 137.03, p < .001, \eta p^2 = .46$
- Greater shoulder flexion for typing task
 - $F(1,161) = 130.40, p < .001, \eta p^2 = .45.$

Discussion

- PCA showed that items grouped by stress and strain
 Right and left strain grouped separately
- Stress and strain components are sensitive to input method
 - Participants are able to report differences
 - Stress-Strain relationship is maintained for input method
- Less sensitive to interaction method (task), especially
 - Task Demand (PC3)
 - Task Activity (PC5)
 - Deviations from the Stress-Strain relationship
- Need for testing with many other interaction methods
- These are ordinal comparisons only
- Validate participant self-report with trained evaluation

Acknowledgements

Research Funded by Office Ergonomics Research Committee

Questions? Paul Ritchey ritchey@tamu.edu

YOU SHALL NOT PASS

 YOU SHALL NOT PASS!!!!!! YOU SHALL NOT PASS!!!!!! YOU SHALL NOT PASS!!!!!!! YOU SHALL NOT PASS!!!!!!! YOU SHALL NOT PASS!!!!!!! YOU SHALL NOT PASS!!!!!!! YOU SHALL NOT PASS!!!!! YOU SHATE AS NOT PASS!!!!! YOU SHALL NOT PASS!!!!! YOU SHALL N

Right Side Discomfort - PC2

Tasks

For each body part during the task you just completed, indicate the amount of discomfort perceived on a scale from 0 to 10, with 0 indicating that there was no perceived discomfort and 10 indicating very, very intense discomfort. Also, for each body part indicate the percentage of the time you feel that body part was used during the task you just completed.

4. Select the image that best reflects the position of your hand and wrist during the task:

1. Please indicate the rating of physical effort that you feel best describes your amount of physical effort, in other words how hard your muscles were working, during the task you just completed using any number from 0 to 10, 0 being no effort at all and 10 being extremely strong, almost maximum effort. You can use decimals, such as 1.5 or 2.5:

Rating	VerbalAnchor						
0	Nothing at all (At Rest)						
2							
3							
4							
5	Strong						
7							
8							
9 10	Extremely Strong (Almost may lifting 250 lbs, of weights)						
	Extremely Strong (Almost max, lifting 350 lbs. of weights)						

2. For the task you just completed, on a scale from 0 to 10 please select the level of activity that best describes your hands. You will give a score for each hand. Consider a pause to be when your hand was idle or at rest.

Rating	Verbal Anchor
0	Hand is idle most of the time, no regular physical efforts
1	
2	Consistent and noticeable long pauses or very slow movements
3	
4	Slow and steady movements with frequent but brief pauses
5	
6	Steady movements and physical effort with few pauses
7	
8	Fast and repetitive movements with no pauses
9	
10	Fast and repetitive movements that cannot be maintained.
0.000	

Software Biomechanics

- Software design affects how we work
- Which layout would be best for touch screen interaction?

	, 19	- U) =			Tou	uchDemo - N	/licrosoft Word					- • · · ·	Ŋ
ſ	Home	e Insert	Page Layout	References	Mailings	Review	View					(0
Paste	¥ 14	Calibri (Body) BB I U	~ 11 abs X ₂ X ² J	× A* A* ∰ Aa∗ <mark>⊪</mark> 2 - <u>A</u> -		• '\$7;• \$#	≇ 2↓ ¶ 	AaBbCcDc 11 Normal	AaBbCcDc 11 No Spaci			ab Replace a Select ▼	
Clipboard	d 😼		Font	Gi		Paragraph	Fa		Styles		5	Editing	
	1 ·	•••••	<u>.</u>	1	2 · · · · 1	3	· · · · · · 4 ·	i	5	· · 6 · · · ·			* 0 * 4
Page: 1 o	of 1	Words: 0					_					•	.::

Toward Biomechanically Informed UI Designs

- Mindful of the development life cycle
 Quick and Iterative
- Need for an ergonomic assessment tool designed for computer work
 - -Able to be used and interpreted by lay people
 - Quick
- Leveraging existing ergonomic assessment tools

 Translating to a new domain and self-report

Limitations

- Tasks were abstracted
- Future work that expands the experimental conditions to different devices, tasks, and duration is warranted to generalize these findings to different software interaction parameters.
- Time limits from practical constraints
- Measure hasn't been validated

Thoughts and Moving Forward

- Clearly participants are able to self-report differences

 Between Task and Input Method
- Measure was sufficiently sensitive
- Ultimate goal is creating a effective and efficient measure

