Feedback and Learning for Gesture Recognition

Jesus Suarez and Robin R. Murphy
The Center for Robot-Assisted Search and Rescue
Texas A&M University

Presentation Overview

- Assistive Robots
- Gesture Recognition
- Feedback
- Learning
- My proposed implementation

Assistive Robots

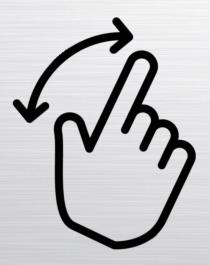
Assistive Robots

Designed to interact with people in a social manner.

- Increased autonomy
 - Need to perceive the world
 - Understand what people are communicating
- Social interaction is key, so interfaces are very important

Assistive Robot Interfaces

Touchscreens, speech and gesture recognition


• "intuitive" means of interaction

Assistive Robot Interfaces

Touchscreens, speech and gesture recognition

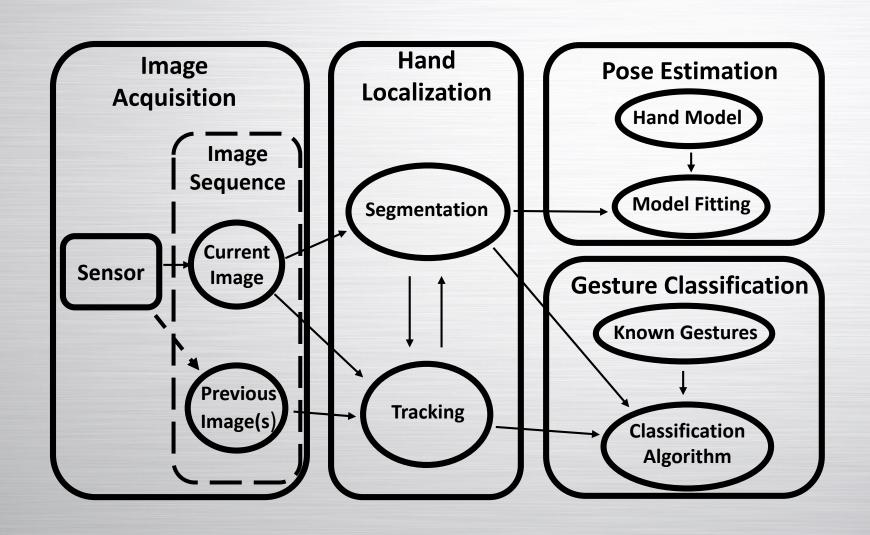
- Speech and touch are difficult to use in challenging environments:
 - Noise and language
 - Mobility, reachability, and injury

Gesture Recognition


- People gesture in several different ways (e.g. body language, pointing, gesticulating)
 - note: sign language is usually considered separately [McNiell, 1996]
- Hand gestures are often preferred for their explicitness
 - Distinction between static poses and dynamic gestures

Gesture Recognition

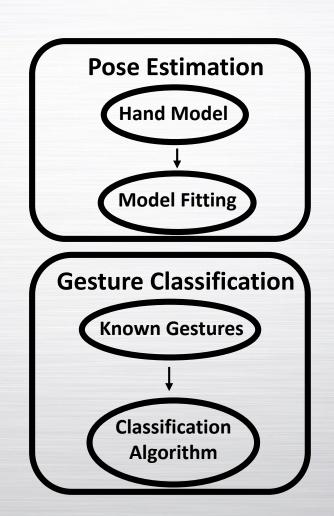
Two types: wearable and visual



Cornell ECE 4760 student project (Monica Lin and Roberto Villalba)

Leap Motion Controller

Visual Gesture Recognition



Feedback

- Unlike some interfaces (e.g. touch), Gesture recognition may fail, so status feedback is needed
 - Recognition errors
 - Hands not visible
- Need prior training to know accepted gestures
 - Not actually intuitive
 - A big problem for real novice users (e.g. rescue victims)

Learning

- Online learning is almost always absent from gesture recognition systems
- Different people gesture in different ways, and it is frustrating to have to adapt
 - System should do so instead

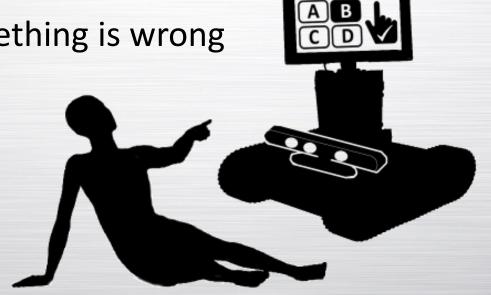
My Proposed system

Base is a visual gesture recognition system

- Depth sensor (PrimeSense)
- Novel hand-detection method (boosted cascades)
- Established tracking (Camshift) and classification algorithms (HMMs)

Developed for robustness to challenging light and noise conditions

My Proposed system


Visual feedback

- Show the user how they can gesture
- Confirm gestures visually

Inform them when something is wrong

Online learning

 Initial gesture set with online retraining

My Proposed System

User Study to evaluate system and interaction performance

What I hope to discover:

- Quantifiable impact of feedback and learning on gesture "performance" (as measured by established HRI metrics)
- Compare effect of different types of visual feedback

Questions

